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ABSTRACT

Dielectric resonators have been proven
possible for a long time. However, they had not
been popular in the past due to the absence of
temperature stable and low loss materials. The
recent advent of low loss, temperature stable
materials has made them useful in a number of
microwave circuit applications. The analysis of
such a resonator in the past has relied on
approximate methods. We shall present a rigorous
field analysis of the circular dielectric resonator
embedded in an inhomogeneous medium. The
analysis is via a numerical mode matching
method, whereby the problem of finding the
modes of the circular dielectric cylinder is cast
into a conventional eigenvalue problem which
could be solved rapidly on the computer. This
method bypasses the need to use Hankel and
Bessel functions, which could be time consuming
to evaluate. The scattering of the field off the
ends of the resonator are characterized by
reflection operators. The resonant frequencies of
the resonator could be easily found by requiring
the phase coherence of the wave after reflection
off the two ends of the resonator.

I. Introduction

Dielectric resonators have become quite
popular recently due to the advent of low loss,
temperature stable materials[1]. They have been
used as filters, frequency stabilizers and
feedback circuits in various microwave circuits
applications. Furthermore, they could be easily
integrated with microwave integrated circuits.
The use of low loss, high dielectric constant
material has made the Q of such a resonator
considerably higher, and the size smaller
compared to conventional metallic cavity res-
onators. However, the rigorous analysis of the
dielectric resonator is behind its applications.
The earliest method to estimate the resonant
frequency of such a resonator were made with

the magnetic wall model[2], while many recent
analyses of the dielectric resonator still make
use of approximate methods{3-6]. Recently, there
has been some work where the analysis of the
resonant frequency of such a resonator were
performed more accurately[7-10]. The rigorous
analyges in the past have restrictive geometry.
In this paper, we present an analysis which is
rigorous, but the geometry has a certain degree
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A rigorous field analysis could
predict the resonant frequencies of a low
dielectric constant resonator. A low dielectric
constant resonator could be useful at a high
frequencies where the limitation in manufacturing
tolerance may dictate the wuse of a larger
resonator.

of versatility.

II. Formulation

The equation governing the axial symmetric
azimuthal electric field in a general circular
dielectric cylinder is given by

d o a°
(pu——i——+—+w uE)pE =0. (1)

dppudp 9z°

Since the TM solution can be obtained from the
TE solution by invoking duality principle, we
need only to consider the TE case here. In the
above, u and ¢ are arbitrary functions of p. To
find the modes or eigenfunctions of the cylinder,
we let

PE(p,2)=) f.(p)e" " a,, (2)

where a, is a constant independent of p and z. It
follows that we can let

£.(P)=) baWg.(p), (3)
Rl

where g,.(p) are some known basis functions and
be are the unknowns to be sought. Substituting
(3) into (2) and later into (1), we obtain for each
a that

I o 2 2)
b - - =0,
Z ( ”appuap wpe-ki, |g.(p)
(4)
We can multiply the above by (pu)'g.lp) and

integrate from zero to infinity to eliminate the p

dependence in the equation. Hence, the above
becomes
N

2
Y ban(Ban-ki,Com)=0 ()
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where
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+w2fo dp59,(p)gn(p) (6)

and

- 1
cm=f0 dp=—g.(p)gn(p) 7)

Equation (5) could be solved for the eigenvalues
and eigenvectors easily. From that we can easily
construct the eigenfunctions of equation (2).
With these eigenfunctions available, we can write
down easily the solutions in region 2 [see Figure
1} of the inhomogeneity.

PEL=T5(p) (4™ + 0™ R, ) -a (8)
and the field in region 1 could be written as

Eyzz —
PE,=Ti(p)- 6" T a (9)

where the variables are more properly defined in
reference [11]. The boundary conditions could be
invoked to find the reflection and transmission
operators. A similar expression as in region 1
can be written in region 3. By requiring the
coherence of the upgoing and downgoing waves
in region 2, the resonance of the dielectric
resonator could be written as

det(T~Ry 0™ Ryp-0™*)=0. (10)

The above equation could be solved to find the
resonance frequencies of the resonators, as the
equation could only be satisfied at a some
frequencies which are the resonant frequencies
of the structure.

III. Numerical Result

We can compute the resonant frequencies of
the dielectric resonator via the above approach.
Figure 2 shows the normalized resonant
frequencies as a function of the contrast for the
dielectric resonator with d/a=1. k;,a is the
normalized resonant frequency. k.a tends to be
larger for higher contrast because the mode is
better trapped inside the resonator. Figure 3
shows the case for d/a=2. In this case the
asymptotic tends to be lower, implying a lower
resonant frequency because the z-variation of
the field is slower in this case. Figure 4 shows
the resonator embedded in a substrate. This is
the model which could be study by our program,
but not by previous rigorous analyses.
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Figure 1. Geometry of the problem
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Figure 2. Normalized frequency versus the contrast of a dielectric resonator,

d/a=1.
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Figure 3. Normalized frequency versus the contrast of a dielectric resonator,
d/a=2.
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Figure 4. Normalized frequency versus the contrast of a dielectric resonator
embedded in a substrate.
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